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We consider the escape over a fluctuating potential barrier with a three-state Markovian noise. The resonant
activations �RA’s� for the mean first-passage times as functions of the transition rates �1, �2, and �3 of the
three-state Markovian noise are obtained, respectively. The effect of the three values of the three-state Mar-
kovian noise on the RA’s is investigated.
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I. INTRODUCTION

Recently the conventional problems of the escape over the
fluctuating potential barrier have attracted a great deal of
attention �1–20�. It was shown that the mean first-passage
time �MFPT� of a particle driven by additive noises over a
fluctuating potential barrier exhibits a minimum as a function
of the flipping rate of the fluctuating potential barrier �1–20�
�or the transition rate of the dichotomous noise�. This phe-
nomenon is called “resonant activation” and was first identi-
fied by Doering and Gadoua �1� and further studied by a
number of other authors �2–20�.

Earlier studies of activation of MFPT over fluctuating po-
tentials were restricted to limiting cases—i.e., slow �21� or
fast �21,22� barrier fluctuations, or small fluctuations �23�.
Owing to using approximate treatments in Refs. �21–23�, the
resonant activation cannot be observed. Recently in Refs.
�1–20�, the authors reported results concerning the escape
time �i.e., MFPT� over a fluctuating potential in the absence
of approximate treatments as in Refs. �21–23�. They revealed
the resonant activation �RA� of MFPT over the fluctuating
potential barrier.

However, all of the above phenomena of resonant activa-
tion for the escape time are associated with the fluctuating
potential barriers, which are dichotomous or Ornstein-
Uhlenbeck. In this paper, we will consider the escape time
over the fluctuating barrier, which is three-state Markovian.

II. MODEL AND ITS MASTER EQUATION

We consider a model whose Langevin equation is �in di-
mensionless form�

ẋ = − �xU�x� + ��t� + ��t� , �1�

where ��t� is a three-state Markovian noise and ��t� is a
Gaussian white noise. U�x� is the potential. The fluctuating
potential U�x , t� satisfies

�xU�x,t� = �xU�x� − ��t� . �2�

Here U�x� is piecewise linear �see Fig. 1�. ��t� takes values
a, b, and c �a, b, and c are constants�. The transition rates of
��t� from a to b or vice versa, from b to c or vice versa, and
from a to c or vice versa are, respectively, �1, �2, and �3.
��t� has zero mean and correlation function ���t���t���
=2D��t− t��. Now, we assume that there is no correlation
between ��t� and ��t�.

The master equation for Eq. �1� is �24�

�tP1 = − �1P1 − �3P1 + �3P3 + �1P2 − �x�− �xU�x� + a�P1

+ D�x
2P1,

�tP2 = − �1P2 − �2P2 + �1P1 + �2P3 − �x�− �xU�x� + b�P2

+ D�x
2P2,

�tP3 = − �2P3 − �3P3 + �2P2 + �3P1 − �x�− �xU�x� + c�P3

+ D�x
2P3, �3�

where P1= P�x , t ,a�, P2= P�x , t ,b�, and P3= P�x , t ,c�. P1

= P�x , t ,a� represents that the particle is at x, the potential in
U�x�, and the three-state Markovian noise in ��t�=a configu-
ration. There is the same understanding for P2 and P3.

We start with the potential at x=−L /2. So the initial con-
dition is P�x ,0�=�i=1

3 Pi�x ,0�=��x+L /2�. The boundary
conditions for the reflecting �x=−L /2� and absorbing �x=0�
boundaries, respectively, are �	−�−�U�x�+ai�Pi�x , t�
+D�xPi�x , t�
�x=−L/2=0 �ai=a ,b, and c� and �Pi�x , t��x=0=0.

III. MEAN FIRST-PASSAGE TIME

The backward master equation for master equation �3� is
�24�

�tG1 = − �1G1 − �3G1 + �3G3 + �1G2 + �− �xU�x� + a��xG1

+ D�x
2G1,

FIG. 1. The piecewise linear potential. For the numerical simu-
lation in this paper, we take L=2.
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�tG2 = − �1G2 − �2G2 + �1G1 + �2G3 + �− �xU�x� + b��xG2

+ D�x
2G2,

�tG3 = − �2G3 − �3G3 + �2G2 + �3G1 + �− �xU�x� + c��xG3

+ D�x
2G3. �4�

The MTPT is defined as �24�

Ti�x� = − �
0

�

t�tGi�x,t�dt = �
0

�

Gi�x,t�dt , �5�

where i=1, 2 and 3.
From Eqs. �4� and �5�, one can obtain the equations of the

MFPT:

− �1T1 − �3T1 + �3T3 + �1T2 + �− �xU�x� + a��xT1 + D�x
2T1

+ 1 = 0,

− �1T2 − �2T2 + �1T1 + �2T3 + �− �xU�x� + b��xT2 + D�x
2T2

+ 1 = 0,

− �2T3 − �3T3 + �2T2 + �3T1 + �− �xU�x� + c��xT3 + D�x
2T3

+ 1 = 0, �6�

where Ti �i=1, 2, and 3� is the MFPT corresponding to the
probability density Pi. The reflecting boundary condition is
�xTi�−L /2�=0 and the absorbing boundary condition Ti�0�
=0. The MFPT for a particle over the fluctuating barrier that
starts at x=−L /2 is T=�i=1

3 Ti�−L /2�.
Taking �xTi=si �i=1,2 ,3�, Eq. �6� can be written as

�x�
s1

T1

s2

T2

s3

T3


 =�
�E − a�/D ��1 + �3�/D 0 − �1/D 0 − �3/D

1 0 0 0 0 0

0 − �1/D �E − b�/D ��1 + �2�/D 0 − �2/D

0 0 1 0 0 0

0 − �3/D 0 − �2/D �E − c�/D ��2 + �3�/D
0 0 0 0 1 0


 ��
s1

T1

s2

T2

s3

T3


 +�
− 1/D

0

− 1/D

0

− 1/D

0


 . �7�

When 3E− �a+b+c��0, the solution of Eq. �7� is �see the
Appendix�

si = �
j=1

5

Kj
�i�Aj

�1� exp�� jx� +
3

3E − �a + b + c�
, �8�

Ti = �
j=1

5
Kj

�i�Aj
�1�

� j
exp�� jx� +

3x

3E − �a + b + c�
+ B6

�1� + Mi,

�9�

where where i=1,2 ,3, and � j �j=1,2 ,3 ,4 ,5� is the nonzero
eigenvalues of the matrix of the homogeneous part about Ti
and si �i=1,2 ,3� in Eq. �7�. Substituting Eqs. �8� and �9�
into the boundary conditions Ti�0�=0 and si�−L /2�=0 �i
=1,2 ,3�, we can obtain six linear algebraic equation for Aj

�1�

�j=1,2 ,3 ,4 ,5� and B6
�1�. From these equations, we can de-

rive Aj
�1� and B6

�1�. Then, the MFPT for a particle over the
fluctuating barrier reads

T = �
i=1

3

Ti�− L/2� = �
i=1

3

�
j=1

5
Kj

�i�Aj
�1�

� j
exp�− L� j/2� + 3B6

�1� + M2

+ M3 −
3L/2

3E − �a + b + c�
, �10�

Here, the condition for the validity of Eq. �10� is 3E− �a
+b+c��0.

IV. CONCLUSION AND DISCUSSION

In Figs. 2�a�–2�c� we plot the behavior of the logarithm of
the MFPT’s with respect to the logarithm of the rates �1, �2,
and �3. The figures show that there are RA’s in the dynamics
of the MFPT’s with an increase of the transition rates �1, �2
and �3. A reason for these RA’s happening here is given
below. The resonance in Figs. 2�a�–2�c� occurs when the
crossing takes place with the fluctuation potential barrier
must likely in U=min�E−a ,E−b ,E−c� configuration �i.e.,
the “down” configuration�. Now the MFPT has a minimum
for the transition rates of the three-state Markovian noise on
the order of the inverse of the time required to cross the
potential with the fluctuation potential barrier in U=min�E
−a ,E−b ,E−c� configuration. In Figs. 2�a�–2�c� we plot the
corresponding points where the transition time equals the
MFPT over the fluctuating potential barrier with the fluctua-
tion potential barrier in U=min�E−a ,E−b ,E−c� configura-
tion. It is clear that this accords with the above reason for the
RAs happening in Figs. 2�a�–2�c�. Further study shows that
the MFPT of the particle over the fluctuating potential barrier
can display a global minimum in ��1, �2, �3� space.

Below we consider the effect of the values a, b, and c of
the three-state Markovian noise on the RA’s. In Figs.
3�a�–3�c�, for different values of the three-state Markovian
noise we represent the logarithm of the MFPT as a function
of the logarithm of the transition rate �1 �Fig. 3�a� corre-
sponds to a=−18, −6, −4, −2, 0, 4, 8, 15, and 20 with D
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=1, E=14, b=2, c=1, �2=exp�−5� and �3=exp�−3�, Fig.
3�b� to b=−16, −10, −6, −4, −2, 0, 2, 6, 10, and 15 with
D=1, E=14, a=8, c=1, �2=exp�−5�, and �3=exp�−3�, Fig.
3�c� to c=−15, −10, −6, 0, 6, 10, and 15 with D=1, E=14,
a=8, b=2, �2=exp�−5�, and �3=exp�−3��. From these fig-
ures we can find that �i� for the value a of the three-state
Markovian noise, when a is zero or negative the RA is in-
distinct; with the increase of a, when a is positive, if it is
smaller the resonant behavior is still indistinct; with the fur-
ther increase of a, the RA becomes distinct; afterwards, the
resonant behavior becomes indistinct again; �ii� for the value
b of the three-state Markovian noise, when b is negative or
zero the RA is distinct; while when b is positive, if b is
smaller the resonant behavior is still distinct, if b is larger the
resonance becomes indistinct; �iii� for the value c of the

three-state Markovian noise, when c is negative or zero the
resonant activation is distinct; while when c is positive, with
the increase of c, the resonant behavior becomes more and
more indistinct. Above, we consider the effect of a, b, and c
on the RA for the MFPT as a function of �1. For the RA of
the MFPT as a function of �2, study shows that if we replace
a with b, �1 with �2, b with c, �2 with �3, c with a, and �3
with �1 of Figs. 3�a�–3�c�, we can get the same figures as
Figs. 3�a�–3�c� for the MFPT versus �2. So the effect of b on
the RA of the MFPT as a function of �2 is same as a on the
RA for the MFPT as a function of �1, the effect of a on the
RA of the MFPT as a function of �2 is same as c on the RA
for the MFPT as a function of �1, and c on the RA for the
MFPT versus �2 is same as b on the RA for the MFPT as a
function of �1. Similarly, further studying shows that for the

FIG. 2. �a� The logarithm of the MFPT versus the logarithm of the transition rate �1 of the three-state Markovian noise with D=1, E
=14, a=8, b=2, c=1, �2=exp�−5�, and �3=exp�−3�; �b� the logarithm of the MFPT versus the logarithm of the transition rate �2 of
the three-state Markovian noise with D=1, E=14, a=1, b=8, c=2, �1=exp�−5�, and �3=exp�−3�; �c� the logarithm of the MFPT versus the
logarithm of the transition rate �3 of the three-state Markovian noise with D=1, E=14, a=1, b=2,c=8, �2=exp�−5�, and �1=exp�−3�.
The marked points �1�, �2�, and �3� are the corresponding points where the transition time equals the MFPT over the fluctuating barrier with
the fluctuating potential barrier in the “down” configuration.
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RA of the MFPT as a function of �3, the effect of c on the
RA of the MFPT as a function of �3 is same as a on the RA
for the MFPT as a function of �1, the effect of a on the RA
of the MFPT as a function of �3 is same as b on the RA for
the MFPT as a function of �1, and b on the RA of the MFPT
as a function of �3 is same as c on the RA for the MFPT as
a function of �1.

The relation of our work to the phenomenon of stochastic
resonance should be considered. For the phenomenon of sto-
chastic resonance, we know that the response of a nonlinear
stochastic system to an inputting signal will be enhanced by
the presence of noise and maximized for certain value of the
noise’s strength. When the frequency of the inputing signal is
equal to the intrinsic frequency of the original stochastic sys-
tem, a phenomenon of resonance will appear. In our paper,
the RA has the phenomenon of resonance. We analyze the
phenomenon of resonance appearing in the RA below. For

small values �1 ��2 or �3� of the transition rate of the
fluctuating potential barrier, a destructive influence on
the asymmetry of the system will be played, so the
ln�1/T�-ln�1 �ln�1/T�-ln�2 or ln�1/T�-ln�3� response
curve will have positive slope. For large �1 ��2 or �3�,
a central role will be played in producing coherent
motion with increases as �1 ��2 or �3� increases;
then, the ln�1/T�-ln�1 �ln�1/T�-ln�2 or ln�1/T�-ln�3�
curve goes down. Thus finally we can obtain a peaked
ln�1/T�-ln�1 �ln�1/T�-ln�2 or ln�1/T�-ln�3� curve, at the
peak of which a phenomenon of resonance appears. The in-
trinsic frequency of the stochastic system studied by us is
��=1/T in which T is the MFPT over the fluctuating poten-
tial barrier. When �� is equal to the frequency of the fluctu-
ating potential barrier—i.e., the transition rate �1 ��2 or
�3�—no resonance happens. In Fig. 3�a�, we plot the line
when �� is equal to �1 �the dotted line�; in Fig. 3�b�, the line

FIG. 3. The logarithm of the MFPT versus the logarithm of the transition rate �1 of the three-state Markovian noise with D=1, E=14,
�2=exp�−5�, and �3=exp�−3� �a� for different values of a �a=−18, −6, −4,−2, 0, 4, 8, 15, and 20, respectively� with b=2 and c=1, �b� for
different values of b �b=−16, −10, −6, −4, −2, 0, 2, 6, 10, and 15, respectively� with a=8 and c=1, �c� for different values of c �c=−15, −10,
−6, 0, 6, 10, and 15, respectively� with a=8 and b=2. The dotted lines are plotted for the case when �� �i.e., 1 /T� equals �1.
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when �� equals �2 �the dotted line� is plotted; in Fig. 3�c�,
the line when �� is equal to �3 �the dotted line� is plotted.

Below we consider the case when 3E− �a+b+c�=0. Nu-
merical simulation and analysis show that now there are four
nonzero real independent eigenvalues and two zero eigenval-
ues for the matrix of the homogeneous part �note �xTi=si�.
So we have

si = �
j=1

4

Cj
�i� exp�rjx� + C5

�i� + C6
�i�x ,

Ti = �
j=1

4
Cj

�i�

rj
exp�rjx� + D5

�i� + C5
�i�x +

1

2
C6

�i�x2, �11�

in which rj �j=1,2 ,3 ,4� are the four nonzero eigenvalues of
the matrix of the homogeneous part in Eq. �7�. From Eq. �7�
and the boundary conditions for Ti and si, using the similar
method used above by us, we can get Cj

�i� and D5
�i� �i

=1,2 ,3, and j=1,2 ,3 ,4 ,5 ,6�. The MFPT for a particle over
the fluctuating barrier is

T = �
i=1

3 ��
j=1

4
Cj

�i�

rj
exp�− L� j/2� + D5

�i� −
L

2
C5

�i� +
L2

8
C6

�i�� .

�12�

Further study shows that when 3E− �a+b+c�=0 there is the
same phenomenon as reported above.

In Eq. �1�, the noise is only three state noise. When it is
four or more states, there will be the same phenomenon �i.e.,
there are the RA’s for the MFPT’s as the functions of the
every transition rate of the noise�. In addition, when the po-
tential barrier is not piecewise linear, such as a bistable or
multitable potential, as long as there is the three-state Mar-
kovian noise in Eq. �1� the phenomenon reported by us in the
paper will exist.

Finally, it must be mentioned that the first consideration
of exit-time statistics for multivalue Markovian noise was
made by Hagan, Doering, and Levermore in Ref. �25�, but
they did not find the phenomenon of resonant activation; the
three-state model considered by us in this paper is the same
as consideration in the distinct context of ratchet transport by
Elston and Doering �26�, but they did not investigate the
escape for the particle over the fluctuating potential barrier.
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APPENDIX

By numerical simulation and analysis we can find that
when 3E− �a+b+c��0 the matrix of the homogeneous part
in Eq. �7� has five nonzero real independent eigenvalues and
a zero eigenvalue. So the general solution of Eq. �7� is

si = �
j=1

5

Aj
�i� exp�� jx� + A6

�i� + A7
�i�x , �A1�

Ti = �
j=1

5

Bj
�i� exp�� jx� + B6

�i� + B7
�i�x , �A2�

where i=1,2 ,3, and � j �j=1,2 ,3 ,4 ,5� is the nonzero eigen-
values.

Substituting Eqs. �A1� and �A2� into Eq. �7� and using the
comparing coefficient method, we can obtain

A6
�1� = A6

�2� = A6
�3� =

3

3E − �a + b + c�
,

Bj
�i� =

Aj
�i�

� j
, A7

�i� = 0, B7
�i� = A6

�i�,

B6
�i� = B6

�1� + Mi, and Aj
�i� = Kj

�i�Aj
�1�,

with

M1 = 0,

M2 =
�b + c − 2a��2 + �2b − a − c��3

��1�2 + �1�3 + �2�3��3E − �a + b + c��
,

M3 =
�b + c − 2a��2 + �2c − a − b��1

��1�2 + �1�3 + �2�3��3E − �a + b + c��
,

Kj
�1� = 1,

Kj
�2� =

�1�2 + �1�3 + �2�3 + � j�2�E − a� − D�2� j
2

�1�2 + �1�3 + �2�3 + � j�3�E − b� − D�3� j
2 ,

and Kj
�3� = −

�1

�3
Kj

�2� +
�1 + �3

�3
+

� j�E − a�
�3

−
D� j

2

�3
.

Then, Eqs. �A1� and �A2� can be written as

si = �
j=1

5

Kj
�i�Aj

�1� exp�� jx� +
3

3E − �a + b + c�
,

Ti = �
j=1

5
Kj

�i�Aj
�1�

� j
exp�� jx� +

3x

3E − �a + b + c�
+ B6

�1� + Mi.
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